public class LinearRegressionModel extends RegressionModel<Vector,LinearRegressionModel> implements LinearRegressionParams, GeneralMLWritable
LinearRegression.| Modifier and Type | Method and Description |
|---|---|
Vector |
coefficients() |
LinearRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
LinearRegressionSummary |
evaluate(Dataset<?> dataset)
Evaluates the model on a test dataset.
|
boolean |
hasSummary()
Indicates whether a training summary exists for this model instance.
|
double |
intercept() |
static LinearRegressionModel |
load(String path) |
int |
numFeatures()
Returns the number of features the model was trained on.
|
double |
predict(Vector features)
Predict label for the given features.
|
static MLReader<LinearRegressionModel> |
read() |
double |
scale() |
LinearRegressionTrainingSummary |
summary()
Gets summary (e.g.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
GeneralMLWriter |
write()
Returns a
GeneralMLWriter instance for this ML instance. |
setFeaturesCol, setPredictionCol, transform, transformSchematransform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitepsilon, getEpsilon, loss, solver, validateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringgetRegParam, regParamelasticNetParam, getElasticNetParamgetMaxIter, maxIterfitIntercept, getFitInterceptgetStandardization, standardizationgetWeightCol, weightColaggregationDepth, getAggregationDepthsaveinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<LinearRegressionModel> read()
public static LinearRegressionModel load(String path)
public String uid()
Identifiableuid in interface Identifiablepublic Vector coefficients()
public double intercept()
public double scale()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,LinearRegressionModel>public LinearRegressionTrainingSummary summary()
trainingSummary == None.public boolean hasSummary()
public LinearRegressionSummary evaluate(Dataset<?> dataset)
dataset - Test dataset to evaluate model on.public double predict(Vector features)
PredictionModeltransform() and output predictionCol.predict in class PredictionModel<Vector,LinearRegressionModel>features - (undocumented)public LinearRegressionModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<LinearRegressionModel>extra - (undocumented)public GeneralMLWriter write()
GeneralMLWriter instance for this ML instance.
For LinearRegressionModel, this does NOT currently save the training summary.
An option to save summary may be added in the future.
This also does not save the parent currently.
write in interface GeneralMLWritablewrite in interface MLWritable