
Creating a TCK Module

Creating a JSR 362 test case module and making the tests visible to the
test driver

TCK Goal

• Wide test coverage to assure that most or all JSR 362 attributes are
implemented

• Test cases should be simple; described in 1 sentence:
• "The MutableRenderParameters.setValues method throws an

IllegalArgumentException if the parameter name is null."

• "The MutableRenderParameters.setValues method accepts an empty array as
values array argument."

• Should test only JSR 362 functionality – no Pluto specifics.

• Concentrate on mandatory functionality as described by the spec.

How the TCK Works
• The test cases are implemented in portlets and sometimes servlets or JSPs.

• These are deployed on the target portal / portlet container

• The test driver:
• sends http requests to the portal under test
• analyzes the response
• extracts test results produced by the TCK portlets

• Test results designated by special HTML tag 'name' and 'id' attribute values
• based on Junit / Selenium

• The TCK:
• Consists of independent modules
• Each module defines list of test cases, portlets, and page definitions
• Provides common tools for creating markup that the driver can understand

• The TCK Build process:
• Aggregates test cases lists & page definitions over all TCK modules
• Collects deployable artifacts in central location
• For Pluto, use the pluto profile: build with 'mvn clean install –Ppluto'

Project Structure

Common utilities used by
multiple test modules

Contains deployment artifacts

Contains the test driver

The test modules

Deploy Directory Structure (after build)

Deploy directory

Contains deployment artifacts

The page file

Portlet war files

The page file is an XML file containing the page definitions expected
by the TCK driver. Each page definition defines a page name along
with the portlets expected to be on the page. The format can be
used directly with Pluto.

It is expected that portal vendors will use some sort of XML
transformation to create corresponding pages on their systems.

Driver Directory Structure (after build)

Driver directory

This is where you find
the test case list

The page file

The test case list file

The Test Case List
Test case names

The test case list is an XML file in 'properties file' format. The property key is the test case name, and the property value is the page name on which
the test case must be found. The test case page names must match page names defined in the page file. The test driver reads in the test case list to
get the tests to be executed.

When the test driver wants to execute a test, it looks for a link on the page that contains the page name. It clicks that link to access the page on
which the test case is to be found.

Page names

How it Looks on a Real Portal Page

The Driver
• Executed through maven: 'mvn test -Prun-tck'

• Configured in the TCK master POM file
• Options: login URL, user name, password, fields for user name & password, Selenium browser

type, timeout

In general, ignore

Recommendation:
stay with
HtmlUnit, it's
fastest and seems
to work pretty
well.

Some Driver Command Line Options

• 'mvn test -Prun-tck –Dtest.timeout=<integer>'

• Sets the timeout to the specified integer value

• 'mvn test -Prun-tck –Dtest.module=<string>'

• The driver will only execute those test cases whose test case name contains the specified
string.

• By making the string more specific, you can execute a group of test cases or even just a single
test case.

• 'mvn test -Prun-tck –Dtest.module=V3PortletContextTests'

• Executes all test cases in module 'V3PortletContextTests'
• 'mvn test -Prun-tck –Dtest.module=V3PortletContextTests_Context_getClassLoader'

• Executes the single test case 'V3PortletContextTests_Context_getClassLoader'

• 'mvn test -Prun-tck –Dtest.debug=true'

• Causes the driver to write (very considerable amounts of) debug information to stdout.

Driver Execution
• The driver initializes

• Reads test case file
• Sort test cases according to page (performance optimization)
• Filters test cases by name if required

• Conceptually, the driver executes each test case as follows:
1. Determines the page on which the test case is to be found
2. Looks for the link containing the page name on the portal page & clicks it

• If the link can't be found, accesses the login page, logs in, tries again
• Searches by link text, not by tag attribute

3. Looks for a test 'setup' link and
• If found, clicks it and waits for page refresh
• A 'setup' link can be an anchor link (GET) or a form submission button (POST)

4. Looks for a test 'execute' link and clicks it if found; waits for refresh
• If found, clicks it and waits for page refresh
• An 'execute' link can be an anchor link (GET) or a form submission button (POST)

5. Looks for test results
• Extracts results from markup
• Determines success / failure

6. Goes to next test case

How the Driver finds Test Case Markup
• It searches page markup for HTML tags by 'id' attribute

• The id is based on the test case name
• Test results: id='testCaseName-result'
• Test details: id='testCaseName-detail'
• Setup link / button: id='testCaseName-setup'
• Execute link / button: id='testCaseName-clickme'
• Resource link: id='testCaseName-reslink' (not directly used by driver)
• Resource div: id='testCaseName-resdiv' (not directly used by driver)

• Example:

The Test Case
• A test case consists of test case results and test case details

• It is identified by a test case name (aka ID)

• The name should be a valid Java identifier; most importantly cannot contain blanks
• Must be unique within the entire TCK (!) ... Please follow naming convention

• The details contains the test case description
• And possibly information collected at run time

• Convention for test case name:
• Allows the class that contains a failing test case to be easily found
• (please follow!)

V2EnvironmentTests_CacheControl_ApiRender_getExpirationTime2

version

Module (file system name)

Class name (unique within module)

Specific test case suffix
(unique within class)

Utilities for generating Test Case markup
• The TCK common module provides utilities for generating markup

• The TCK module developer is STRONGLY ENCOURAGED to use them!
• Allows developers to orient themselves easily in test case modules

• Allows changes to be made in single location if it should become necessary

The TestCaseDetails Class

• The TestCaseDetails class maps test case
names to test case descriptions.

• Has methods for getting a test result
based on the test case name.

• Extend TestCaseDetails to provide a map
for your test case names / details.

• If used only by one module, keep it in
that module.

• If common to several modules, put it in
the common module.

The TestResult Class
• The TestResult class encapsulates a test case name / test case

description pair.

• Generates markup for success / failure completion - see
toString() and writeTo().

• The setTCSuccess() method allows test case success / failure
to be recorded.

• The appendTCDetail(String) method allows details (such as
failure reason) to results at runtime.

• The appendTCDetail(Throwable) method adds stack trace
info from a Throwable to the result if the portlet API method
tested throws an unexpected exception.

The TestLink and TestSetupLink Classes
• The TestLink class encapsulates a test execution link.

• Generates <a> tag markup - see toString() and writeTo().

• The TestLink class encapsulates a test setup link.

• Generates <a> tag markup - see toString() and writeTo().

• Both are generally used with render URLs, and should
not be used with action URLs.

• Parameters can be set on the URL before passing it to
the link class.

The TestButton and TestSetupButton Classes
• The TestButton class encapsulates a test execution form which is

submitted when the button is clicked.

• Generates <FORM> tag markup - see toString() and writeTo().

• Sets an action parameter with name Constants.BUTTON_PARAM_NAME
to the value 'testCaseName + Constants.CLICK_ID' for
controlling test execution

• The TestSetupButton class encapsulates a test setup form which is
submitted when the button is clicked.

• Generates <FORM> tag markup - see toString()and writeTo().

• Sets an action parameter with name Constants.BUTTON_PARAM_NAME
to the value 'testCaseName + Constants.CLICK_ID' for controlling test
execution

• Both must be used with action URLs.

• Parameters can be set on the URL before passing it to the button class.

The ResourceLink class
• The ResourceLink class encapsulates a resource URL

• Generates JavaScript to fetch the resource

• The writeResourceFetcher method writes a link and
JavaScript code that, when the link is clicked clicked,
fetches the resource and inserts it into the DOM

• The writeResourceFetcherImmediate method writes a
link and JavaScript code that immediately fetches the
resource and inserts it into the DOM

The CompareUtils & Constants classes

• Contains some static methods for String, Enumeration, Map, etc.
comparison.

• javax.portlet.tck.constants.Constants in the common module defines
a bunch of sometimes useful constants.

• If you have more ideas for common tools, feel free to add them!

V3 Test Module Basic Structure

Maven artifact name

Class containing test cases

Class containing test case definitions. If you define a bunch of test cases
used in more than one module, put the map file in the common module

Page definitions (don't change name, or the build process won't find it)

Test case list (don't change name, or the build process won't find it)

Portlet.xml, web.xml not required. Beans.xml required if you use CDI
features

Test case assertions file (optional). CSV file containing info about the test
cases.

The test list and page files
Page definition file:

Test case list file:

The page name defined in the
page definition file must
match the page name used in
the test case list file.

Recommendation:
Use the module name
according to the test case
name convention.

Creating a new Test Module

• Create your module directory
• Please prefix your module name with 'V3' for ease of sorting

• Example: 'V3PortletContextTests'

• Create your POM
• For most tests, you should be able to copy the POM from

'V3PortletContextTests' and just change the artifact ID.

Copy the POM from an existing module and change the artifact
ID. Note that the artifact ID within the TCK is not the same as
the module name, which in retrospect was probably a poor
design decision. Please use the module name prefixed with
'tck-'.

Adding a New Module to the TCK Build

• This is a pain. There are too many moving parts, and it's easy to forget
something.
• If you have ideas / time for improvements, feel free ...

• You need to edit the following files (wrt the TCK root directory):
• ./pom.xml

• ./deploy/pom.xml

• ./driver/pom.xml (2 locations!)

• ./driver/src/main/resources/xml-resources/pageFiles.xml

• ./driver/src/main/resources/xml-resources/testFiles.xml

Adding a New Module to the TCK Build

Add the module name to the
modules list in the TCK POM.

Add the new module as a
dependency to the deploy
subproject POM. Be sure to
use the corresponding artifact
ID which can be different than
the module ID.

Adding a New Module to the TCK Build

Add the new module as a
dependency to the driver
subproject POM. Be sure to
use the corresponding artifact
ID which can be different than
the module ID.

Also in the driver POM, add
the artifact ID to the
includeArtifactIds list in the
maven dependency plugin
configuration.

Adding a New Module to the TCK Build

In the driver subproject, edit
the pageFiles.xml and
testfiles.xml files.

Add the name of the file containing the page(s) for your
module to the filelist element in pageFiles.xml. The name
is constructed from the artifact ID for your module
concatenated with the suffix '-pages.xml'

Add the name of the file containing the test cases for your
module to the filelist element in testFiles.xml. The name is
constructed from the artifact ID for your module
concatenated with the suffix '-tests.xml'

